Photosynthetic light harvesting: excitons and coherence.

نویسندگان

  • Francesca Fassioli
  • Rayomond Dinshaw
  • Paul C Arpin
  • Gregory D Scholes
چکیده

Photosynthesis begins with light harvesting, where specialized pigment-protein complexes transform sunlight into electronic excitations delivered to reaction centres to initiate charge separation. There is evidence that quantum coherence between electronic excited states plays a role in energy transfer. In this review, we discuss how quantum coherence manifests in photosynthetic light harvesting and its implications. We begin by examining the concept of an exciton, an excited electronic state delocalized over several spatially separated molecules, which is the most widely available signature of quantum coherence in light harvesting. We then discuss recent results concerning the possibility that quantum coherence between electronically excited states of donors and acceptors may give rise to a quantum coherent evolution of excitations, modifying the traditional incoherent picture of energy transfer. Key to this (partially) coherent energy transfer appears to be the structure of the environment, in particular the participation of non-equilibrium vibrational modes. We discuss the open questions and controversies regarding quantum coherent energy transfer and how these can be addressed using new experimental techniques.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2).

Light-harvesting antenna complexes transfer energy from sunlight to photosynthetic reaction centers where charge separation drives cellular metabolism. The process through which pigments transfer excitation energy involves a complex choreography of coherent and incoherent processes mediated by the surrounding protein and solvent environment. The recent discovery of coherent dynamics in photosyn...

متن کامل

Numerical Evidence of Small Coherent Subsystems at Low Temperatures in Light Harvesting Complex II

The extent of exciton coherence in protein–pigment complexes has significant implications for the initial light harvesting step in photosynthetic organisms. In this work we model the main antenna protein of photosystem II, namely light harvesting complex II (LHC–II), with a single–exciton Hamiltonian with sites coupled via dipole–dipole interaction, with linear coupling to a dissipative phonon ...

متن کامل

Excitons in intact cells of photosynthetic bacteria.

Live cells and regular crystals seem fundamentally incompatible. Still, effects characteristic to ideal crystals, such as coherent sharing of excitation, have been recently used in many studies to explain the behavior of several photosynthetic complexes, especially the inner workings of the light-harvesting apparatus of the oldest known photosynthetic organisms, the purple bacteria. To this dat...

متن کامل

Pigment Organization and Transfer of Electronic Excitation in the Photosynthetic Unit of Purple Bacteria

Absorption of light by light-harvesting complexes and transfer of electronic excitation to the photosynthetic reaction center (RC) constitute the primary light-harvesting process of photosynthesis. This process is investigated on the basis of an atomic level structure of the so-called photosynthetic unit of the photosynthetic bacterium Rhodobacter sphaeroides. The photosynthetic unit combines i...

متن کامل

Quantum Coherence in Photosynthetic Light Harvesting

Recent two-dimensional (2D) electronic spectroscopic experiments revealed that electronic energy transfer in photosynthetic light harvesting involves long-lived quantum coherence among electronic excitations of pigments. These findings have led to the suggestion that quantum coherence might play a role in achieving the remarkable quantum efficiency of photosynthetic light harvesting. Further, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the Royal Society, Interface

دوره 11 92  شماره 

صفحات  -

تاریخ انتشار 2014